AN12352

LPC54S0xx Execute In Place with Secure Boot

Rev. 2 — 18 September 2020

1 Introduction

Secure boot is an important feature for LPC54S0xx parts.

Secure boot can ensure that unauthorized images (code) are not executed on
a given product. The secure bootloader in ROM is immutable code forming
the Root of Trust. When secure boot is enabled, the boot ROM examines the
user executable image loaded in on-chip RAM to determine the authenticity
of the code. If the code is authentic, the control is transferred. This process
establishes a chain of trusted code from ROM to the user boot code.

The secure bootloader in ROM loads the user code into on-chip RAM and
executes it in RAM after authentication or decryption. When the secure boot
is enabled, the image size, code size + RO size + RW size, should be smaller
than one of the RAM blocks, SRAMX or SRAMO. The maximum bootable size,
code size + RO size + RW size, is 192 KB.

Figure 1 shows the boot process.

Application Note

Contents
1 Introduction...........ccceeeeeinninicienn, 1
1.1 Terminology.......ccceeeveeerieeeenneenn. 3
2 Implementation...........cccccccivveenenn. 4
21 OVErVIEW.oeviiiiiiiiiie e 4
2.2 Divide the image binary............... 4
23 Create the image (MCUXpresso
IDE)..ciiiiiiieeeece e 6
24 Program the secure bootable and
non-secure part images............. 10
25 Convert key file generated by
elftosb......ccovieii 13
26 Program 128 bits AES key and
related OTP bit fields to enable
secure boot.........ccccveeiiiiiiinenn. 14
3 Demonstration...........cccccoviveeeennne. 15
3.1 Environment...........c.cccooiii. 15
3.2 Steps and result......................... 15
4 Revision history.........cccccoiveeeenne. 16

h
P

NXP Semiconductors

Introduction

CPU clock =FRO 48 MHz

OTP
secure boot
configured?

OTP secure
boot configured?

NO

hd

{ Non_Secure Boot

Disconnect SWD

Verify secure image
(authentication andfor decryption)
(switch CPU clock FRO = 965MHz,
revert to 48MHz upon completion)

Boot device = EMC,
SPIFI, SPI boot

OTP
BOOT_SRC bits
programmed?

YES

Secure Image
Verification Successful?

SPIFI, SPI, or auto boat (in

_ order SPIFI/SPIEMC)
Check ISP pins

Serial ISP mode = UART, 12C,
SPl, USB0, USB1 ISP

Enter ISP mode
Copy first 512 bytes
of image into SRAMX

Image marker =
0xEDDCH4BD?

Probe signal?

Header marker =

YES OxFEEDASAS?
Download image Image marker =
to SRAMX 0x7379656B7

Normal
header

PUF header

marker =

Image:
0x737965687

DICE enabled?

Normal ‘ Read PUF Key stare ‘ OTP UseDice = 1
header
PUF header
Init PUF, Get PUF Keys Init PUF, Get PUF Keys
(requires OTP UsePUF = 1) (requires OTP UsePUF = 1)

Compute DICE CDI

r

Using key store header image Using key store header image
start offset, move complete start offset, copy first 512 bytes Y
image to start at address 0 of mage inta SRAMX Copy image from SRAMX to
i SRAMO-3 if load address =
y 0x2000 0000

»

' '
NO ngmarker = Connect/enable SWD if

0xEDDC94BD? OTP SWD enable,
else disable SWD

4 A
Run { Retum error

NO

Header marker =
OxFEEDAGAS?.

SPIFI, SPI,
EMC boat?

YES

Load full image
into SRAMX

A4

{ Return error

Figure 1. Secure boot process

When the secure boot is enabled, there is a size limitation and additional code limitation. The code is not executed in place (XIP)
from QSPI Flash. To solve the aforementioned limitations, this application note describes a simple demo. The demo shows how
to split the image into bootable part and XIP part. The bootable part contains secure bootable code, whereas the XIP part contains
plain-text code. The secure bootable part is useful to secure the core code via image encryption and/or authentication.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 2/18

NXP Semiconductors

Introduction

NOTE

In this document, enabling secure boot is required to make secure boot, which is done by configuring
secure boot type field in OTP. As an example, this document configures it to Enforce Encryption, with the

OTP_ SECURE BOOT TYPE field set to b’10.

NOTE

Modifying the OTP is a one-time operation and is not reversed. Thus, care must be taken before writing to OTP

secure boot type field and other related fields.

1.1 Terminology

Table 1 lists the terminology used in the following application note sections.

Table 1. Terminology

ltems

Description

Secure Bootable Image

A bootable image that is encrypted or signed, and so on. Additionally,
it meets the requirements of the secure boot type.

Non-Secure (NS) Image

Plain text image.

Flashloader

The Flashloader is the secondary bootloader program loaded into the
on-chip RAM of LPC54S0xx to support b/host. The project is located
in SDK as a bootloader demo.

DFU Utility

The DFU utility is the host application used to load the Flashloader
binary into the internal RAM memory of LPC540xx device connected
to the host in USB DFU mode. dfu-util.exe is an open source
command-line application. To download the tool, see dfu-util.

blhost

PC Command-Line Interface (CLI) tools to implement MCUBOOT
protocaol, it is part of MCUBOOT software package. The blhost.exe
utility is an example host program used to interface with LPC54S0xx
running the Flashloader program. This tool can be downloaded from
MCUBOOT.

HxD

HxD is a binary file editor. It is easy to use and HxD is free of charge
for private and commercial use.

elftosb

The elftosb tool creates a binary output file that contains the user
application image along with a series of bootloader commands. The
output file is known as a Secure Binary or SB file for short. These
files have the *sb extension. The tool uses an input command file to
control the sequence of bootloader commands present in the output
file. This command file is called a boot descriptor file or BD file for
short. This tool can be downloaded from MCUBOOT.

elftosb-gui

The elftosb-guiis a GUI tool with a main focus to help the

user prepare a secure application image, as well as other useful
security operation specific to target MCU platform. The Elftosb-gui
tool provides intuitive graphical interface on top of e1ftosb and
blhost command-line applications and it guides user in preparation
of secure boot images required by ROM bootloader. This tool can be
downloaded from MCUBOOT.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note

3/18

http://dfu-util.sourceforge.net/releases/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://mh-nexus.de/en/hxd/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab

NXP Semiconductors

Implementation

2 Implementation

This section introduces how to split the code into two parts.
» Secure Bootable part (up to 192 kB)

— Contains confidential code that may or may not be performance sensitive (vector table, time constrained critical
algorithm, and so on.)

— Encrypted or signed as per secure image formats based on secure boot type.

The secure bootloader in ROM will load this Secure Bootable Part into RAM, and executes it after successful verification. Since
the secure bootloader disables the XIP, it is required that SPIFI is initialized to enable XIP.

* Non-Secure part (XIP)
— Contains code that is not confidential.

— XIP code and the code loaded into RAM are placed in flash in plain text format.

2.1 Overview
The following steps are required to create a separate image.
1. Divide the image into two parts by modifying linker script.

« Divide the image into secure bootable part and non-secure part through linker script. The division helps place the code
identified as protected in the secure bootable part and the non-protected code in the non-secure part.

2. Create the image.
« After coding, compile the code. The binary is generated based on the linker script.
» Use tools to split the image into two parts: Secure Bootable Part and Non-Secure Part and then process them.
3. Program the two parts of the image into the flash.
* Use MCUXpresso and CMSIS-DAP to program the images.
4. Program the 128 bits AES key to OTP.
5. Program the related OTP bit fields to enable secure boot.
« Secure boot type.

» Secure boot enable.

2.2 Divide the image binary

Figure 2 shows an example of a special image layout.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 4/18

NXP Semiconductors

Implementation

0x1000_0000 FLASH RAM 0x0000_0000
Up to 192 kB < —_— -

0x0002_FFFF

0x1010_0000

fun_sramO — — 0x2000_0000
fun_sram1 NG M
oo NN 0x2000_FFFF
fun_sram3 N ~N

\ ~

Non-Secure Part <

fun_plaintextO(XIP) 0x2001 8000
x2001_

‘ 0x2001_FFFF

\{ ‘ 0x2001_0000
0x2001_7FFF

fun_plaintext1(XIP) 4{ ‘0"2002—0000
0x103F_FFFF 0x2002_7FFF
Figure 2. Flash and RAM map
NOTE
Before the code is executed, the fun_sram0, fun_sram1, fun_sram2, and fun_sram3 sections are loaded into

the RAM.

In the demo project, MCUXpresso IDE, these sections are loaded into execution address by ResetlSR provided by the SDK.
In the MCUXpresso IDE environment, the Id files of the project are modified to achieve this image layout.

As shown in Figure 3, section fun_plaintext1 is defined and placed in the non-secure part. fun_plaintext1 starts at 0x103r Froo0.

.text_plaintextl ex1e3FFFee : AT(exle3FFFee)

{
*(.fun_plaintextl)
} > BOARD_FLASH_NS

Figure 3. Linker scripts

The non-confidential code is placed in one of the above Non-Secure (NS) sections of the image through attribute directive when
declaring functions. The following code snippet places ns_print_with_banner function code in section func_plaintext1 placed in the
non-secure part:

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 5/18

NXP Semiconductors

Implementation

__attribute_ ((section(".fun_plaintextl"))) void ns_print_with_banner(void)

{

PRINTF("<NS-FLASH:>I'm from non-secure part of QSPI Flash.\r\n");
PRINTF("<NS-FLASH: >My address: @x%@8X.\r\n", ns_print_with_banner);

}

Figure 4. Example code of attribute function

2.3 Create the image (MCUXpresso IDE)

The steps to create the image in MCUXpresso IDE environment are:

1. Initialize SPIFI to enable XIP
. Build and generate the image

2
3. Split the image as secure-plain text and non-secure
4

. Create the secure bootable part image based on secure-plain text image

2.3.1 Initialize SPIFI to enable XIP

This step is a must to enable XIP if the application code is larger than 192 KB and secure boot is enabled.

Complete the SPIFI initialization in the secure bootable part.

The code to initialize SPIFI for XIP is shown in Figure 5.

void app_spifi_init(void)
spifi_config_t config = {@};

uint32_t sourceClockFreq;
spifi_command_t command[COMMAND_NUM] = {

RESET_PeripheralReset(kSPIFI_RST_SHIFT_RSTn);
/* Set SPIFI clock source */
CLOCK_AttachClk(kFRO_HF_to_SPIFI_CLK);
sourceClockFreq = CLOCK_GetFroHfFreg();
/* set the clock divider */
/* Initialize SPIFI =/
SPIFI_GetDefaultConfig(&config);
SPIFI_Init(EXAMPLE_SPIFI, &config);

#1f defined QUAD_MODE_WAL
/* Enable Quad mode */
enable_quad_mode();

#endif

[* Setup memory command to enable XIP =/

}

Figure 5. Example code of SPIFI initialization

{PAGE_SIZE, false, kSPIFI Datalnput, 1, kSPIFI_CommandDataQuad, kSPIFI_CommandOpcodedddrThreeBytes, ©@x6B},
{PAGE_SIZE, false, kSPIFI_DataOutput, @, kRSPIFI_CommandDataQuad, kSPIFI_CommandOpcodeAddrThreeBytes, @x32},
{1, false, kSPIFI_DataInput, @, kSPIFI_CommandAllSerial, kSPIFI_CommandOpcodeOnly, 8x85},

{@, false, kSPIFI DataOutput, @, RSPIFI_CommandAllSerial, RSPIFI CommandOpcodeAddrThreeBytes, B8x2@},

{8, false, RSPIFI_DataOutput, @, kSPIFI_CommandAllSerial, kSPIFI_CommandOpcodeOnly, Bx86},

{1, false, kSPIFI_DataOutput, 8, kSPIFI_CommandAlLSerial, kSPIFI_CommandOpcodeOnly, Bx31}};

CLOCK_SetC1kDiv(kCLOCK DivSpificlk, sourceClockFreq / EXAMPLE_SPT_BAUDRATE, false);

SPIFI_SetMemoryCommand(EXAMPLE_SPIFI, &Enmmand[READ]);

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note

6/18

NXP Semiconductors

2.3.2 Build and generate the image

Implementation

When the software of the project is completed, the project is compiled and then the *axffile is generated.

The simplest way to create a one-off binary or a hex file is to open up the Debug, or Release, folder in the Project Explorer.
Right-click on the *axffile, and select the Binary Utilities > Create binary option as shown in Figure 6.

= utilities
8] crt infolist.dtd

{ [% LPC545018M_part.xml
HIR 4
'O Quickstart ... ©Global Vari...

== New project...

L Import SDK example(s)...

i~ Build your project
@ % puild
¢ Clean
~ Debug your project
| #*
o Debug

~ Miscellaneous

® it project settings

; = MCUXpresso Config Tools> >
& Quick Settings>>

“=Variables

35 Ipcxpresso54s018m_xip_with_secure_boot_an_demo.axf -

[# LPC54S018M_internal_peripheral.xml

Breakpoints

¥ Import project(s) from file system...

EE

New

Open

Open With

Show in Local Terminal

Copy
Paste

Delete
Move...
Rename...
Import...
Export...
Refresh

Run As

Debug As

Profile As

Validate

Utilities

Binary Utilities

Tools

Run C/C++ Code Analysis

Ctrl+C
Ctrl+Vv
Delete

F2

F5

> lanner(void) __ attribute__
n(".fun_plaintext1"))) wc

> pI'm from non-secure part
>My address: Bx%e8X.\r\n'

h_banner(void) __ attribut
n(".fun_srame"))) void sr

>I'm loaded from QSPI Fle
>My execution address: @

e 2 [Problems O Memory &D
50 IDE LinkServer (inc. CMSIS-DAP)
> ftes - 958272/1048560

> [tes - 966656/1048560

ftes - 983040/1048568

ftes - 999424/1048568

ftes - 1815808/16848568

> tes - 1©32192/1048560

> Create hex

> I Create binary
Create S-Record

LB Team 2 Disassemble
B Compare With 2 ELF Information
¢ Byild all projects [Debug] Replace With 2 Size
Figure 6. Generate the binary
2.3.3 Split the image as secure-plain text and non-secure
It is recommended to use HxD, to split the image.
Table 2 describes the plain image layout.
Table 2. Plain image layout
Offset Block Value Description
0x00 Arm Vector table __initial_sp Stack pointer
0x04 Arm Vector table __initial_pc Image execution start address
0x28 HEADER_OFFSET HEADER_OFFSET A typical offset value is 0x160.

HEADER_OFFSET+0x0C

Image_length

Table continues on the next page...

Total length of the image -4.
The length

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note

7/18

NXP Semiconductors

Table 2. Plain image layout (continued)

Implementation

Figure 7. Image_length (image_length in this header equals 0x0000_2ED4)

Offset Block Value Description
does not include the four
bytes that make up the CRC
value field.
The image length is obtained from the image header.
Offset (h) 00 01 02 03 04 05 06 07 08 09 0OA OBIOC 0D OE OFI Decoded text
00000060 21 02 00 00 25 02 00 00 29 02 00 00 2D 02 00 00 ', . .®...)eee=cun
Q0000070 31 02 00 00 35 02 00 00 39 02 00 00 3D 02 00 00O 1...5...9...=...
00000080 41 02 00 00 45 02 00 0O 49 02 00 00 4D 02 00 A...E...I...M...
00000090 51 02 00 00 55 02 00 00 59 02 00 0O 5D 02 00 00 Q...U...¥Y...]...
000000R0 €1 02 00 00 65 02 00 00 €9 02 00 00 6D 02 00 00 A..eBuveiee.Moa.
000000BO 71 02 00 00 75 02 00 00 79 02 00 00 7D 02 00 [« P - P e T
000000CO 81 02 00 00 85 02 00 00 89 02 00 00 8D 02 00 C —_— T
Q00000DO 91 02 00 00 85 02 00 00 99 02 00 00 8D 02 00 00 M..®...®™ . .iuens
OO0OQOO00EQO Al 02 00 00 A5 02 00 00 A9 02 00 00 AD 02 00 C jeeF...0.......
O00000F0O Bl 02 00 00 B5 02 00 00 B9 02 00 00 BD 02 00 00 Z£...PRe.at...3...
00000100 C1 02 00 00 C5 02 00 00 C9 02 00 00 CD 02 00 00 A...A...E...I...
00000110 D1 02 00 00 D5 02 00 00 D9 02 00 00 DD 02 00 00 W...0...0...Y¥...
00000120 E1 02 00 00 E5 02 00 00 E9 02 00 00 00 0O 00 © R S
00000130 ©O0 OO0 QOO0 OO 00 OO OO0 OO OO0 OO OO0 OO OO0 00 00 00 sesesssmnssnnsns
00000140 ©OO OO OO0 OO OO OO OO OO QOO OO OO OO QOO OO0 OO0 OO0 s.ieeeassssssssas
00000150 ©OO OO OO0 OO OO OO OO0 OO QO OO OO0 00 QOO0 00 00 00 ..icceassssasasas
AS A5 ED FE 01 00 00 00 00 00 00 00
00000170 ©O 00O 00 OO QO 0O 00 0O QO 0O 00 00

The total length of the image in bytes= image_length + 4.

In order to generate secure-bootable part and non-secure part images, the original image binary is split into secure-plain text
image and non-secure image.

The secure-plain text image is from address 0 to address (total length of the image — 1) of the original image binary. This image

is used to create the secure-bootable part image.

The non-secure image is from address 0x0010_0000 (0x1010_0000 - 0x1000_0000) to the end of the original image. This image

is as non-secure part image.

2.3.4 Create the secure bootable part image based on secure-plain text image

Use the efffosb and elftosb-guito create the secure-bootable part image.

» Generate 128 bits AES key.

Use the following command to generate 128 bits AES key.

elftosb.exe --keygen 128 aesl28 key.key

Where “aes128_key.key is the name of AES key file which stores AES128 key.

» Create the secure-bootable image

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note

8/18

NXP Semiconductors

Implementation

Open elftosb-gui, to create the secure-bootable image by following the steps shown in Figure 8

? elftosb-gui
File About

Select target device:
| LPC5450xx (1D

Image Device
Image configuration

Load N:v@ Save Save As

File: newfFile

Input
*Image file: 7...8/Tools/an_demo_secure_plaintext.bin
*Load address: (0x20000000 et from input image
Define output image format @

*Image execution target:
RAM oM

*Image authentication type:

Encrypted @ v ‘

Keys
*Device key sou
*Encryption key:...es128_key.key

Qutput
*Master Boot:..013/Too|s/an_demo_secure_part.bin

Process Create script

Figure 8. Create the Secure Bootable image by effiosb-gui

1. Select the LPC54S0xx device.

Create a new configuration.

Select the secure-plain text binary image.
Get the load address from the input image.

Select the image execution target as RAM.

o o~ 0D

Select the image authentication type as Encrypted.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 9/18

NXP Semiconductors

Implementation

7. Select the device key source as OTP.
8. Select the encryption key (the 128 bits AES key generated before).
9. Select the path and name of the output encrypted image.

10. Click the Process button to create the secure-bootable part image.

2.4 Program the secure bootable and non-secure part images
To program the Flash, it is recommended to use MCUXpresso and CMSIS-DAP.

NOTE
Jflash is not recommended. Jflash fills the checksum into the image during the programing process, because the
image cannot pass verification during the secure boot.

2.4.1 Program secure bootable part image into Flash
1. Open MCUXpresso IDE with any SDK project of LPC54S018M or LPC54S018.

38 workspace - Welcome page - MCUXpresso IDE

— X
File Edit Navigate Search Project Configlools Run FreeRTOS Window Help
=R RS CRSERVI TR ES Y T ES N RIS DS TS X R RS PAST T RS R AR R [Quick Access] || & |[&
(& Project Ex.. 3 % Peripheral Registers ## Faults & Symbol Vi.. ~ & | @ Welcome =B
eElss @~ - 5 fles///C:/NXP/MCUXpressol DE_10.3.0_2187_prc3/ide/plugins/com.crt.Ipcxpresso.brand_10.3.0.201810041206/pages/registeredhtm | »
& Ipoxpresso54s018m _led_blinky <Debug>
A
Welcome to MCUXpresso IDE !
MCUXpresso IDE provides an easy-to-use Eclipse-based development environment for NXP MCUs based on ARM®
Cortex®-M cores, including LPC and Kinetis microcontrollers and i MX RT crossover processors. It offers advanced
editing, compiling, and debugging features with the addition of MCU-specific debugging views, code trace and profiling,
multicore debugging, and integrated configuration tools.
Your installation of MCUXpresso IDE is ready to use. All product functionality is enabled, and no further activation is v
it
O Quickstart ... “-Global Vari Variables ® Breakpoints & Outline ~ & nstalled SDKs s @ Console 2 [2! Problems 0 Memory & Debug ® Instruction Trace = Power Measure.
. A No consoles to display at this time.
5 MCUXpresso IDE - Quickstart Panel

22 Project: Ipoxpresso54s018m_led_blinky [Debug]

Figure 9. Open the MCUXpresso IDE

2. Open MCUXpresso IDE LinkServer (inc.CMSIS-DAP) probes by clicking the button in the order as shown in Figure 10.

.workspace - Welcome page - MCUXpresso IDE
File Edit Navigate Search Project ConfigTools Run FreeRTOS Window Help @

i~ |® v & v @& i@viBin|pumd s SR bonEreeiev]s LI s vO v R im g viwE il v

B e % B - /| B MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes ?
Ed P&E Micro probes |l
SEGGER J-Link probes

% Project Ex... ® |%: Peripheral... ! Registers 4 Faults % Symbol Vi.. ~ JWeI(om@l QiCoueste

&
I‘:“ Ipcxpresso54s018m_led_blinky < Debug>|®

Figure 10. Open GUI Flash tool

The result is as shown in Figure 11.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note 10/18

NXP Semiconductors

Implementation

B8 Gui Flash Tool O X

@ GUI Flash Tool for: .
MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes 1 error detected
Program file into flash:

Target: LPC545018MI

Probe Options
Probe specific options

Connect script ~ | Workspace... | File System...

Default Flash Driver) ~ |Workspace... File System...

Reset Handling Default ~
Flash Reset Handling Default »
[]Reset the target on connection

Target Operations
Select the target flash operation to perform

Program Erase}

Actions

Select the action to perform

® Program O Program (mass erase first)
O Verify only (O Check file areas blank
Options

Select the options to apply

File to program J ~ |Workspace... | File System...

Format to use for programming ® axf O bin

Base address

[V Reset target on completion

Run... Cancel

Figure 11. Open MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes

Follow the screenshot shown in Figure 12 to configure it, especially the red parts of the screenshot.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 11/18

NXP Semiconductors

Implementation

38 Gui Flash Tool

B B T R T

Probe Options

Probe specific options

Connect script

~ |Workspace...

Default Flash Driver

a

Reset Handling Default
Flash Reset Handling Default
D Reset the target on connection

Target Operations
Select the target flash operation to perform

Workspace...

File System...

File System...

ps

pv

Program Erase}

Actions
Select the action to perform

@ Program O Program (mass erase first)
O Verify only O Check file areas blank
Options

Select the options to apply

choose the Secure

File to program ‘

Format to use for programming axf |(®) bin

ﬂ Workspace... JFile System...

Image

Base address | 0x10000000

[] Reset target on completion

General Options

Flash programming tool options

Additional options |

] Repeat on completion [] Preview command Clear console

Figure 12. Setting for programing Secure Bootable Part image

Run...

Cancel

3. Click the Run button to program the Secure Bootable Part image into the Flash.

2.4.2 Program the non-secure part image into Flash
1. Follow Step 1 and Step 2.

2. Change the configuration as shown in Figure 13, especially the red parts in the screenshot.

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note

12/18

NXP Semiconductors

Implementation

3 Gui Flash Tool O X

TR e L T]

Probe Options

Probe specific options

Connect script ~ | Workspace... File System...

Default Flash Driver a ~ Workspace... File System...

Reset Handling Default ~
Flash Reset Handling Default b
D Reset the target on connection

Target Operations
Select the target flash operation to perform

Program Erase}

Actions

Select the action to perform

@Program O Program (mass erase first)

O Verify only Q Check file areas blank

o Choose the Non-Secure Image
Select the options to apply \

File to program ‘ ™ ‘ Workspace... | File System...

Format to use for programming axf (®) bin

Base address Jox10100000| |

[] Reset target on completion

General Options

Flash programming tool options

Additional options |

] Repeat on completion [] Preview command Clear console

Run... Cancel

Figure 13. Setting for programing non-secure image

Click the Run button to program the non-secure image into the Flash.

2.5 Convert key file generated by elftosb
The key file generated by elffosb is in the ASCII format. It should be converted to hexadecimal format for blhost,

Figure 14 and Figure 15 show how to convert the key file.

Offset (h) 00 01 02 03 04 05 0O 07 08 09 OA OB OC OD OE OF Decoded text

00000000 30 45 30 31 37 37 39 35 37 4 32 37 45 43 38 O0OEO1779573D27ECS
00000010 31 38 39 34 35 31 30 31 2 34 39 39 42 32 1894510016B499B2

wn

| s |
% | s |

woLn

Figure 14. aes128_key.key

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 13/18

NXP Semiconductors

Implementation

Offset (h) 00 01 02 03 04 05 0O€ 07 08 09 OA OB OC OD OE OF Decoded text
00000000 OE 01 77 95 73 D2 7E C8 18 94 51 16 B4 99 B2 ..w*sO~E.”Q.. ™

Figure 15. aes128_key.bin

2.6 Program 128 bits AES key and related OTP bit fields to enable secure boot

It is recommended to use blhostto program the OTP bits. For LPC54S0xx, the flashloader should be load into on-chip RAM and
then the blhost will be available.

2.6.1 Use DFU to load the flashloader into the RAM
Configure the ISP pins to make the chip enter the USB0O DFU boot mode.

Table 3. Boot source based on ISP pins

ISP2 ISP1 ISPO
Boot mode Description
PIO0_6 pin PIO0_5 pin PIO0_4 pin

USB DFU class is used to
USBO0 DFU boot LOW HIGH LOW download image over the USB0O
full-speed port into SRAM.

Connect the LPC54S0xx device USBO0 and PC with USB.

Use the following command to load the flashloader into the RAM. flashloader.bin is located in
an_lpc54s0_xip_with_secureboot. It can also be generated by compiling the sdk project which is located
in sdklboardsllpcxpresso54s018lbootloader_examples|fiashloader.

dfu-util.exe -D flashloader.bin

2.6.2 Use blhost to program 128 bits AES key and related OTP bit fields

Once the flashloader binary is downloaded on the device connected in USB DFU mode and starts its execution on the LPC54S0xx
platform, there remains a physical USB connection between the LPC54S0xx platform USB1 (High-Speed) and host. The
flashloader will be ready to receive the commands.

2.6.2.1 128 bits AES key
Use the following command to program 128 bits AES key.

blhost.exe -u 0x1fc9,0x01a2 -- program-aeskey aesl28 key.bin

2.6.2.2 Secure boot type bit field

Use the following command to program the Secure boot type as Enforce Encryption.

blhost.exe -u 0x1fc9,0x0la2 -- efuse-program-once 12 00000010

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 14/18

NXP Semiconductors

Demonstration

2.6.2.3 Secure boot enable bit field

Use the following command to enable the secure boot.

blhost.exe -u 0x1fc9,0x0la2 -- efuse-program-once 12 00000004

3 Demonstration

This section describes the environment and the demo steps and results.

3.1

Environment

This section describes the hardware and software environment.

3.1.1 Hardware environment

* Board

— LPCXpresso54S018 (LPC54S018-EVK) or LPCXpresso54S018M (LPC54S018M-EVK)

» Debugger

— Integrated CMSIS-DAP debugger on the board

« Miscellaneous

— Two Micro USB cables
— PC

3.1.2 Software environment

* Tool chain

— MCUXpresso IDE v10.3.0

» Software package

3.2

— an_lpc54s0_xip_with_secureboot.zip

Steps and result

The basic steps are as follows:

1.

Build & Compile
Build and compile the demo project located in an_lpc54s0_xip_with_secureboot/an_demo.
Process image

Process the image according to Split the image as secure-plain text and non-secure and Create the secure bootable part
image based on secure-plain text image .

Download

Follow Program the secure bootable and non-secure part images to download images.

Program the AES key.

Follow Convert key file generated by elftosb to program the AES key.

Program the related OTP bit fields

Follow Program 128 bits AES key and related OTP bit fields to enable secure boot to program the related OTP bit fields.
Run

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note 15/18

NXP Semiconductors

Revision history

Reset the board to run by pressing the Reset button on the board.
7. Result

Figure 16 shows the messages printed on the terminal, 115200+8+N+1, by the demo code.

a.30 .

LED v

*LNITEer any

A

Figure 16. Messages printed on the terminal

The information with banner, <S:>, means it is printed in Secure Bootable Partimage. The information with banner, <NS:> means
it is printed in Non-Secure part image.

As described in the print information displayed on the terminal, the program will echo each entered character.

The onboard LED3 will also blink per second.

4 Revision history
Table 4 summarizes the changes since the initial release.

Table 4. Revision history

Revision number Date Substantive changes
0 18 February 2019 | Initial release
1 25 February 2019 | Updated Figure 13 and tools path in Terminology.
2 18 September 2020 | . ypdated Table 1
« Updated Convert key file generated by elftosb

Table continues on the next page...

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 16/18

NXP Semiconductors

Table 4. Revision history (continued)

Revision history

Revision number

Date

Substantive changes

» Updated Program 128 bits AES key and related OTP bit fields to enable

secure boot

+ Updated Use blhost to program 128 bits AES key and related OTP bit fields

+ Added 128 bits AES key

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020

Application Note

17718

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone,
ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or
registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019-2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 September 2020
Document identifier: AN12352

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Terminology

	2 Implementation
	2.1 Overview
	2.2 Divide the image binary
	2.3 Create the image (MCUXpresso IDE)
	2.3.1 Initialize SPIFI to enable XIP
	2.3.2 Build and generate the image
	2.3.3 Split the image as secure-plain text and non-secure
	2.3.4 Create the secure bootable part image based on secure-plain text image

	2.4 Program the secure bootable and non-secure part images
	2.4.1 Program secure bootable part image into Flash
	2.4.2 Program the non-secure part image into Flash

	2.5 Convert key file generated by elftosb
	2.6 Program 128 bits AES key and related OTP bit fields to enable secure boot
	2.6.1 Use DFU to load the flashloader into the RAM
	2.6.2 Use blhost to program 128 bits AES key and related OTP bit fields
	2.6.2.1 128 bits AES key
	2.6.2.2 Secure boot type bit field
	2.6.2.3 Secure boot enable bit field

	3 Demonstration
	3.1 Environment
	3.1.1 Hardware environment
	3.1.2 Software environment

	3.2 Steps and result

	4 Revision history

